Министерство науки и высшего образования РФ Федеральное государственное автономное образовательное учреждение высшего образования

«СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Б1.В.ДВ.02.01.04 МАТЕМАТИЧЕСКОЕ	
МОДЕЛИРОВАНИЕ	
Вычислительные методы механики жидкости и газа	
наименование дисциплины (модуля) в соответствии с учебным планом	
аправление подготовки / специальность	
01.04.02 Прикладная математика и информатика	
аправленность (профиль)	
01.04.02.01 Математическое моделирование	
орма обучения очная	
од набора 2022	

РАБОЧАЯ ПРОГРАММА ЛИСШИПЛИНЫ (МОЛУЛЯ)

Программу составили							
д.ф	м.н., профессор, Адрианов А.Л.						
полжность инишалы фамилия							

1 Цели и задачи изучения дисциплины

1.1 Цель преподавания дисциплины

изучения дисциплины являются: подготовка студентов магистратуры в области прикладной математики, механики и информатики до уровня, сравнимого с аспирантами и соискателями степени PhD зарубежных вузов; формирование универсальных и профессиональных компетенций, которыми обязан владеть будущий элитный специалист в избранной сфере студенты магистратуры получить необходимую деятельности; должны области существующих современных подходов (методов) эрудицию вычислительной механики жидкости и газа (МЖГ).

В настоящее время существует много важных практических задач и приложений, где без использования ЭВМ и связанного с ним вычислительного моделирования уже просто не обойтись. Именно так обстоит дело в некогда классической МЖГ – науке, которая, как и механика деформируемого твердого тела лежит в основе создания аэрокосмической отрасли страны.

В дисциплине «Вычислительные методы МЖГ» изучаются основы современного вычислительного моделирования как одномерных, так и многомерных физических процессов.

К целям изучения данной дисциплины можно также отнести обучение студентов магистратуры, бакалавриата и специалитета самостоятельному решению классических задач математики и механики, а также практическому применению математических методов решения многомерных задач, включая алгоритмизацию задачи и разработку программного обеспечения (ПО) (в перспективе адаптацию существующего ПО под суперЭВМ), а также использование средств компьютерной (машинной) алгебры.

1.2 Задачи изучения дисциплины

Задачами изучения дисциплины являются: В процессе изучения дисциплины студенты магистратуры должны знать о существующих в настоящий момент вычислительных методах применяющихся в МЖГ, информационных технологиях; усвоить основы современных машинных (в смысле ЭВМ) методов решения классических задач континуальной дискретной математики; усвоить основные разделы современного численного анализа; получить навыки конструирования наиболее точных и экономичных вычислительных методов решения задач механики, физики, обеспечить гидрогазодинамики (МЖГ),экономики, экологии И т.п.; межпредметную изучаемых связь ранее дисциплин, таких как: математический анализ, уравнения математической физики, функциональный анализ, методы вычислений, дискретная математика, программирование, общая физика и теоретическая механика, современные алгоритмы исследования математических моделей.

В задачи дисциплины также входит освоение основных этапов вычислительного моделирования: выбор и формулировка вычислительного метода (запись разностной схемы) и краевых условий в дискретной форме; дискретизация расчетной области (построение сетки); исследование свойств

данного метода (аппроксимация, устойчивость, сходимость и др.); выбор метода решения алгебраических уравнений (нахождение решения разностной задачи); анализ полученного результата.

В процессе изучения дисциплины магистранты должны усвоить разделы современного численного анализа, научиться конструировать наиболее точные и экономичные вычислительные методы решения многочисленных задач МЖГ, физики, гидрогазодинамики, экономики, экологии и т.п.

1.3 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Код и наименование индикатора достижения компетенции	Запланированные результаты обучения по дисциплине
ПК-1: Способен разрабатыват	ь и исследовать математические модели, методы и
алгоритмы по тематике провод	димых исследований
ПК-1.1: Обладает	
достаточными	
фундаментальными	
теоретическими и	
практическими знаниями	
математических и	
естественных наук, основ	
программирования и	
информационных технологий	
для проведения в конкретной	
области профессиональной	
деятельности	
ПК-1.2: Решает научные	
задачи в соответствии с	
поставленной целью и в	
соответствии с выбранной	
методикой	

1.4 Особенности реализации дисциплины

Язык реализации дисциплины: Русский.

Дисциплина (модуль) реализуется без применения ЭО и ДОТ.

2. Объем дисциплины (модуля)

Вид учебной работы	Всего, зачетных единиц (акад.час)	1
Контактная работа с преподавателем:	1,06 (38)	
занятия лекционного типа	0,53 (19)	
практические занятия	0,53 (19)	
Самостоятельная работа обучающихся:	1,94 (70)	
курсовое проектирование (КП)	Нет	
курсовая работа (КР)	Нет	
Промежуточная аттестация (Экзамен)	1 (36)	

3 Содержание дисциплины (модуля)

3.1 Разделы дисциплины и виды занятий (тематический план занятий)

		Контактная работа, ак. час.							
				типа					
№ п/п			ятия					Самостоятельная работа, ак. час.	
			онного	Семина	ры и/или	Лабора	торные		
	Модули, темы (разделы) дисциплины	ТИ	па	Практи	ические	работі	ы и/или		
12.11				зан	RИТR	Практ	икумы		
		D	В том		В том	D.	В том	_	В том
		Всего	числе в ЭИОС	Всего	числе в ЭИОС	Всего	числе в ЭИОС	Всего	числе в ЭИОС
1. M	еханика сплошной среды.								
	1. Свойства газов и жидкостей. Молекулярная структура газов и жидкостей, потенциал взаимодействия. Гипотеза								
	Даламбера-Эйлера и критерий сплошности среды.								
	Уровни описания течений жидкости и газа. Модели								
	жидкой среды. Основные модели сплошной и								
	разреженной сред. Основные гипотезы.								
	Макроскопические параметры и функции состояния								
	среды. Уравнения состояния (термическое и	2							
	калорическое) идеального и реального газов. Свойства								
	жидкостей и газов (текучесть, вязкость, сжимаемость).								
	Вязкость, упругость (скорость звука) и теплопроводность среды с позиций кинетической								
	теории газов. Скорость распространения малых								
	возмущений в потоке газа. Скорость звука. Критерий								
	сжимаемости. Число Маха								

2. Элементы механики сплошной среды. Точки зрения Лагранжа и Эйлера на изучение движения сплошной среды; переход от переменных Лагранжа к переменным Эйлера и наоборот. Сопутствующая (собственная, естественная) система координат. Индивидуальная (полная) и местная производные по времени. Установившиеся и неустановившиеся движения; роль системы координат при описании таких движений. Линия тока и траектория частицы (случаи их совпадения и несовпадения, примеры). Потенциальное векторное поле; примеры потенциальных и не потенциальных полей величин. Интегральная и дифференциальная формы записи законов сохранения; эквивалентность и различие форм, отсутствие их взаимно-однозначного соответствия. Формулы Грина,	3				
Стокса, Остроградского-Гаусса. Соотношения на поверхностях разрывов. Вывод соотношений на разрывах из интегральных законов сохранения 3. Модельные уравнения в частных производных. Классификация дифференциальных уравнений в частных производных. Постановка краевых задач. Корректность краевой задачи. О корректной постановке задач газодинамики. Модельные уравнения в частных производных. Уравнения переноса, теплопроводности, Лапласа, Пуассона. Системы уравнений газовой динамики, акустики. Другие системы уравнений,	2				
использующиеся в вычислительных методах					
4.				20	
2. Теория разностных схем в МЖГ					

1. Элементы метода сеток. Сеточная функция (способы определения), разновидности расчетных сеток, применяющихся в МЖГ. Сеточная функция (способы определения), разновидности расчетных сеток для областей различной формы. Структурированные и неструктурированные сетки. Примеры построения простейших разностных схем. Явные и неявные разностные схемы. Способы построения. Запись разностной схемы в операторной форме на примере уравнения Пуассона. Свойства разностных схем. Сходимость, аппроксимация, устойчивость, монотонность, консервативность, транспортивность и пр. Порядок аппроксимации разностной схемы и его определение. Понятие о первом дифференциальном приближении. Устойчивость разностной схемы. Зависимость между аппроксимацией, устойчивостью и сходимостью в линейном случае (теорема Лакса).	4				
2. Методы решения сеточных уравнений. Прямые методы решения. Методы скалярной и матричной прогонки. Итерационные методы решения уравнения Пуассона. Искусственное введение времени в стационарный процесс (принцип установления). Метод установления. Метод искусственной сжимаемости Б.Г. Кузнецова	6				

3. Методы расщепления и другие методы. Метод					
конечных разностей для решения многомерных задач.					
Методы расщепления по физическим процессам и					
координатным направлениям. Метод переменных					
направлений. Метод дробных шагов Н.Н. Яненко.					
Редукция многомерной задачи для уравнений в частных					
производных к задаче для обыкновенных					
дифференциальных уравнений (метод прямых).					
Разностные схемы для расчета движения сжимаемого					
газа (Общие сведения). Методы расчета течений					
сжимаемой жидкости. Разностные схемы с явной и					
неявной искусственной вязкостью. Искусственное					
сглаживание немонотонностей в решении. Основные					
положения метода распада разрывов С.К. Годунова на					
примере уравнений акустики. Обобщение данного					
метода на квазилинейные уравнения газовой динамики.					
Стационарный вариант метода распада разрывов.	2				
Численное решение уравнений пограничного слоя и	2				
параболизованных уравнений Навье-Стокса (Общие					
сведения). Другие численные методы (Общие сведения).					
Неоднородные численные методы решения					
многомерных задач аэрогазодинамики. Метод					
выделения разрывов в задачах аэрогазодинамики.					
Локальная теория интерференции стационарных					
газодинамических разрывов. Изображение ударно-					
волновых взаимодействий в плоскости поляр. Тройные					
конфигурации ударных волн, догоняющие и встречные					
скачки уплотнения. Регулярное и нерегулярное					
взаимодействие разрывов. Использование точных					
соотношений на разрывах и соотношений на					
характеристиках газодинамических уравнений при					
численном интегрировании уравнений Эйлера. Метод					
конечных элементов. Спектральные методы (Общие	9				
сведения)					

4. Знакомство и изучение оболочки (системы) MathCAD, встроенной графики, Quicksheets (быстрые листы), help (помощь). Знакомство с таблицами физических констант в MathCAD		2			
5. Представление чисел на ЭВМ; разрядная сетка ЭВМ; арифметика с плавающей точкой (логарифмическая погрешность); вычисление машинного эпсилон. Символьная арифметика в MathCAD. Получение (математический вывод) соотношений на газодинамических разрывах средствами компьютерной алгебры MathCAD		2			
6. Модельные уравнения; разностная аппроксимация простейших дифференциальных операторов на практических примерах; явные и неявные разностные схемы (РС). Исследование явных разностных схем для простейшего гиперболического уравнения переноса (пассивной субстанции в МЖГ)		2			
7. Моделирование процесса теплопроводности на основе аппарата явных разностных схем. Моделирование процесса теплопроводности на основе аппарата неявных разностных схем		4			

& CVOTHINGOTH DC: OHIDOKOLINGULIA DC HO HOVINGOV					
8. Сходимость РС; аппроксимация РС на примерах (практическое доказательство, в частности, в системе					
MathCAD с использованием функции «series» (symbolic					
math)); спектральный признак устойчивости PC					
(практическое доказательство устойчивости РС, в					
частности, в системе MathCAD с использованием					
функции «series» (symbolic math)); анализ устойчивости					
РС для простейшего уравнения переноса; условие		6			
устойчивости Куранта-Фридрихса-Леви (КФЛ);		6			
математическое моделирование и анализ численных					
решений уравнения переноса с переменной, зависящей					
от координат (x,t), скоростью; анализ устойчивости PC					
для простейшего уравнения диффузии; математическое					
моделирование и анализ численных решений уравнения					
диффузии с различными краевыми условиями; анализ					
диссипативных и дисперсионных свойств конкретных					
PC; неявные PC и их реализация в системе MathCAD					
9. Численное решение уравнений Лапласа, Пуассона		2			
итерационными методами. Метод прямых		3			
10.				50	
Всего	19	19		70	

4 Учебно-методическое обеспечение дисциплины

4.1 Печатные и электронные издания:

- 1. Зализняк В.Е. Численные методы. Основы научных вычислений: учеб. пособие для бакалавров по спец. (напр.) подг. 010501 (010500.62) "Прикладная математика и информатика" (Москва: Юрайт).
- 2. Самарский А. А., Попов Ю. П. Разностные методы решения задач газовой динамики: учебное пособие для вузов по специальности "Прикладаная математика" (Москва: Наука, Гл. ред. физ.-мат. лит.).
- 3. Плис А.С., Сливина Н.А. Mathcad. Математический практикум для инженеров и экономистов: учеб. пособие(М.: Финансы и статистика).
- 4. Пирумов У. Г., Росляков Г. С. Численные методы газовой динамики: учебное пособие для втузов(Москва: Высшая школа).
- 5. Марчук Г. И. Методы вычислительной математики: учеб. пособие(Санкт -Петербург: Лань).
- 6. Адрианов А. Л., Блинов А. Н., Матвеев А. Д., Гапоненко Ю. А. Современные вычислительные алгоритмы для исследования математических моделей: электрон. учеб.-метод. комплекс дисциплины (Красноярск: ИПК СФУ).

4.2 Лицензионное и свободно распространяемое программное обеспечение, в том числе отечественного производства (программное обеспечение, на которое университет имеет лицензию, а также свободно распространяемое программное обеспечение):

1. Методика проведения занятий предусматривает использование технических средств (проекторы, интерактивные доски), обеспеченных соответствующим программным обеспечением. Применяется вычислительная техника и программная среда MathCad

4.3 Интернет-ресурсы, включая профессиональные базы данных и информационные справочные системы:

- 1. Учебная и научная литература по курсу. Компьютерные демонстрации, связанные с программой курса, технические возможности для их просмотра. Наличие компьютерных программ общего назначения.
- 2. Операционные системы: семейства Windows (не ниже Windows XP).

5 Фонд оценочных средств

Оценочные средства находятся в приложении к рабочим программам дисциплин.

6 Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине (модулю)

Аудитория должна быть оборудована современным видеопроекционным оборудованием для презентаций, вычислительной техникой, а также иметь интерактивную доску или доску для письма маркерами.

Освоение дисциплины инвалидами и лицами с ограниченными возможностями здоровья, в зависимости от нозологий, осуществляется с использованием средств обучения общего и специального назначения.